Barrier-free intermolecular proton transfer in the uracil-glycine complex induced by excess electron attachment
نویسندگان
چکیده
The photoelectron spectra (PES) of anions of uracil-glycine and uracil-phenylalanine complexes reveal broad features with maxima at 1.8 and 2.0 eV. The results of ab initio density functional B3LYP and second order Møller-Plesset theory calculations indicate that the excess electron occupies a π∗ orbital localized on uracil. The excess electron attachment to the complex can induce a barrier-free proton transfer (BFPT) from the carboxylic group of glycine to the O8 atom of uracil. As a result, the four most stable structures of the anion of uracil-glycine complex can be characterized as the neutral radical of hydrogenated uracil solvated by the anion of deprotonated glycine. The similarity between the PES spectra for the uracil complexes with glycine and phenylalanine suggests that the BFPT is also operative in the case of the latter anionic species. The BFPT to the O8 atom of uracil may be related to the damage of nucleic acid bases by low energy electrons because the O8 atom is involved in a hydrogen bond with adenine in the standard Watson-Crick pairing scheme. PACS. 31.10.+z Theory of electronic structure, electronic transitions, and chemical binding – 33.80.Eh Autoionization, photoionization, and photodetachment – 36.40.Wa Charged clusters
منابع مشابه
Barrier-free intermolecular proton transfer induced by excess electron attachment to the complex of alanine with uracil.
The photoelectron spectrum of the uracil-alanine anionic complex (UA)(-) has been recorded with 2.540 eV photons. This spectrum reveals a broad feature with a maximum between 1.6 and 2.1 eV. The vertical electron detachment energy is too large to be attributed to an (UA)(-) anionic complex in which an intact uracil anion is solvated by alanine, or vice versa. The neutral and anionic complexes o...
متن کاملFluorine-Substituted Phenols as Probes to Study Intermolecular Proton Transfer Induced by Excess Electron Attachment to Uracil-Phenol Complexes
Internet Electronic Conference of Molecular Design 2003, November 23 – December 6 Abstract Motivation. The experiments suggest that low-energy electrons, possibly localized on nucleic acid bases, induce DNA damage. The results of our recent studies strongly suggest that the excess electron attachment to the complex of a nucleic acid base with an amino acid can induce a barrier-free proton trans...
متن کاملIntermolecular proton transfer in anionic complexes of uracil with alcohols.
A series of 18 alcohols (ROH) has been designed with an enthalpy of deprotonation in the gas phase (H(DP)) in the range 13.8-16.3 eV. The effects of excess electron attachment to the binary alcohol-uracil (ROH...U) complexes have been studied at the density functional level with a B3LYP exchange-correlation functional and at the second-order Møller-Plesset perturbation theory level. The photoel...
متن کاملPhotoelectron spectroscopy and density functional theory studies on the uridine homodimer radical anions.
We report the photoelectron spectrum (PES) of the homogeneous dimer anion radical of uridine, (rU)(2)(●-). It features a broad band consisting of an onset of ∼1.2 eV and a maximum at the electron binding energy (EBE) ranging from 2.0 to 2.5 eV. Calculations performed at the B3LYP∕6-31++G∗∗ level of theory suggest that the PES is dominated by dimeric radical anions in which one uridine nucleosid...
متن کاملAnion of the formic acid dimer as a model for intermolecular proton transfer induced by a pi* excess electron.
The neutral and anionic formic acid dimers have been studied at the second-order Moller-Plesset and coupled-cluster level of theory with single, double, and perturbative triple excitations with augmented, correlation-consistent basis sets of double- and triple-zeta quality. Scans of the potential-energy surface for the anion were performed at the density-functional level of theory with a hybrid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002